

PRODUCT CODE CS006

INTENDED USE

This reagent is intended for in vitro quantitative determination of Creatinine in serum & plasma.

CLINICAL SIGNIFICANCE

Creatinine is formed in muscles from Phospho Creatinine. It is an important form of energy, being a store of high-energy phosphate. Creatinine determinations have one advantage over Urea determination that it is not affected by a high protein diet.

Serum Creatinine is more specific & sensitive indicator of renal function. Simultaneous estimations of serum Urea & Creatinine provide better information. Serum Urea nitrogen, Creatinine ratio is > 15 in pre-renal failure, & < 10 in renal failure.

Decreased levels are found in muscle dystrophy.

Clinical diagnosis should not be made on a single test result; it should integrate clinical and other laboratory data.

PRINCIPLE

In the Jaffe reaction, Creatinine reacts with alkaline picrate to produce a reddish - orange color the intensity of which at 490 nm is directly proportional to the Creatinine concentration.

Alkali

REAGENT COMPOSITION

Creatinine R1 (SL)	Acid Reag	gent
Picric acid	35 mmol/	L
Creatinine R2 (SL)	Alkaline	Reagent
Sodium Hydroxide	320 mmo	1/L
Creatinine Standard		
Creatinine standard conc	entration	2 mg/dL or 177 µmol/L

REAGENT STORAGE AND STABILITY

The reagents are stable, if protected from light, up to the stated expiry date when stored at 15 - 25° C.

PREPARATION OF WORKING REAGENT

Mix 1 volume of Reagent 1(R1) with 1 volume of Reagent 2 (R2) Ensure working reagent is at $20-25^{\circ}$ C before use. All reagents are stable until the stated expiry date when stored at $15-25^{\circ}$ C and protected from direct sunlight. The working reagent is stable for about 32 hours at $15-25^{\circ}$ C.

CREATININE Kinetic –Jaffe's Method (Without deproteinisation)

SPECIMEN

Serum is recommended, however heparinized plasma may also be used. Creatinine is stable for 24 hours at $2-8^{\circ}C$.

PRECAUTION

To avoid contamination, use clean laboratory wares. Avoid direct exposure of reagent to light.

ASSAY

Wavelength	:	490 nm
Cuvette	:	1 cm light path
Temperature	:	20-25°C (see note 2)
Measurement	:	Against air, increasing absorbance

PROCEDURE

Pipette into cuvettes	Blank	Standard	Sample
Working reagent	1000 µL	1000 µL	1000 µL
Standard		100 µL	
Sample			100 µL
3.61 11 1 11 11 11			1

Mix well immediately in each case, simultaneously start the stopwatch. After 30 seconds measure absorbance A 1. Exactly 2 minutes after the measurement determine absorbance A2. A2 - A1 = Δ A

CALCULATION

	ΔA sample	
Serum Creatinine (mg/dL) =		X 2 (Std.conc.)
	ΔA standard	

To convert mg/dL to µmol/L multiply by 88.4

Linearity

This reagent is linear up 13 mg/dL

If the concentration is greater than linearity (13 mg/dL), dilute the sample 1+5 with physiological saline (NaCl; 9g/L) and repeat the assay. Multiply the result by 6.

NORMAL RANGE

Serum Creatinine

Male	0.7-1.4 mg/dL	62-124 µmol/L	
Female	0.7-1.2 mg/dL	62-106 µmol/L	

QUALITY CONTROL

All control sera with Creatinine value determined by this method may be used.

- The assay is not influenced by glucose 6g/l, bilirubin 20mg/l, ascorbic acid 10 mg/l, acetone 10mmol/L or acetoacetic acid 1 mmol/l.
- 2- Reagent is highly dependent upon temperature, so a constant reaction temperature is required for both standard and sample within one series.
- 3- Reagent 1 (picric acid) is a strong oxidizing agent avoid contact with skin. Wipe any spillages as picric acid is explosive.
- 4- Reagent 2 (NaOH) is caustic. Do not swallow avoid contact with skin and mucous membrane.

SYMBOL ON LABELS

Symbols	Signify	Symbols	Signify
REF	Catalogue Number	SIZE	Pack Size
	Expiry Date	VOL	Volume
K	Storage Condition	LOT	Lot Number
Ĩ	Instruction for Use	IVD	In Vitro Diagnostics
~~~	Manufacturing Date	<b>***</b>	Manufacturer
X	Number of Tests	2	For Single Use Only
EC REP	EC Representative	(€	European conformity

# BIBILOGRAPHY

- 1- Fabing D. L. and Erthingghausen. G.;Clin. Chem. 17 .391, 1971.
- 2- Young. D.S. et al.;Clin. Chem. 21,286D, 1975Trinder, P. Ann. Clin. Biochem, 6,24,1969.
- 3- Tietz, N.W. (Ed,); Textbook of Clinical Chemistry, W.B. Saunders, 1271, 1986



Bio Research For Medical Diagnostics Muslim Al Attar Street,P.O.Box:1235, Amman-11953,Jordan Tel:+962 64892525, Fax: +962 64892526, www.bioresearch.com.jo



MDSS GmbH Schiffgraben 41 30175 Hannover, Germany

Doc.No.: IFU-CH-014 Rev.: 05 Page **1** of **1** 

